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We used the responses of neurons in extrastriate visual area MT to determine how well neural noise can be reduced by averaging the
responses of neurons across time. For individual MT neurons, we calculated the time course of Shannon information about motion
direction from sustained motion at constant velocities. Stimuli were random dot patterns moving at the preferred speed of the cell for 256
msec, in a direction chosen randomly with 15° increments. Information about motion direction calculated from cumulative spike count
rose rapidly from the onset of the neural response and then saturated, reaching 80% of maximum information in the first 100 msec. Most
of the early saturation of information could be attributed to correlated fluctuations in the spike counts of individual neurons on time
scales in excess of 100 msec. Thus, temporal correlations limit the benefits of averaging across time, much as correlations among the
responses of different neurons limit the benefits of averaging across large populations. Although information about direction was
available quickly from MT neurons, the direction discrimination by individual MT neurons was poor, with mean thresholds above 30° in
most neurons. We conclude that almost all available directional information could be extracted from the first few spikes of the response
of the neuron, on a time scale comparable with the initiation of smooth pursuit eye movements. However, neural responses still must be
pooled across the population in MT to account for the direction discrimination of the pursuit behavior.
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Introduction
Our understanding of the neural code should be both informed
and constrained by the time scales of relevance for animal behav-
ior. In flies, for example, we know that visual motion can trigger
flight maneuvers in �30 msec (Land and Collett, 1974) and that
visual motion can be represented on this time scale by short
sequences of action potentials in motion-sensitive neurons (de
Ruyter van Steveninck and Bialek, 1988; Rieke et al., 1997). Pri-
mate vision also guides both perceptual and motor behaviors that
can occur over time scales of �100 msec, during which time only
a few action potentials are fired by any given sensory neuron.
Indeed, the 200 msec duration of most eye fixations implies that
the visual system is capable of taking in sensory information on a
short time scale, although most neurons in the mammalian visual
cortex show sustained responses to visual stimuli.

Relatively little is known about how neural signals are inte-
grated across time, especially by comparison with the large body

of previous analyses of how they might be integrated across pop-
ulations of neurons (Salinas and Abbott, 1994; Abbott et al., 1996;
Shadlen et al., 1996; Oram et al., 1998; Abbott and Dayan, 1999;
Pouget et al., 2000; Bair et al., 2001). Several previous papers have
shown that reliable behavioral responses can be generated on a
short time scale on the basis of relatively short exposures to visual
stimuli (de Bruyn and Orban, 1988; Watamaniuk et al., 1989;
Snowden and Braddick, 1991; Thorpe et al., 1996; Cook and
Maunsell, 2002; Roitman and Shadlen, 2002; Gold and Shadlen,
2003). In addition, the discriminative power of neural responses
may be excellent when based solely on the early transient compo-
nent of longer sustained responses (Oram and Perrett, 1992;
Tovee et al., 1993; Heller et al., 1995; Buracas et al., 1998; Muller
et al., 2001; Palanca and DeAngelis, 2003). Our goal was to inves-
tigate the temporal scale of neural representation systematically
in relation to a specific visually driven motor behavior.

Our analysis of how information is accumulated across time
and populations of neurons is motivated by the time course over
which visual motion guides smooth pursuit eye movements. Pri-
mates track small moving objects with smooth eye movements
that depend on estimates of the speed and direction of target
motion. The 100 msec latency from visual input to smooth eye
movement output dictates that pursuit must be able to extract
reliable estimates of image direction and speed on a time scale of
100 msec. We chose to focus on extrastriate area MT because it is
a major source of the visual inputs that control pursuit (New-
some et al., 1985; Groh et al., 1997; Born et al., 2000) and because
it projects, via the pontine nuclei, to the parts of the cerebellum
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that participate in pursuit eye movements (Giolli et al., 2001;
Distler et al., 2002). Furthermore, neurons in MT have response
properties that seem appropriate for guiding pursuit: they are
selective for moving stimuli and are tuned for the direction and
speed of visual motion (Maunsell and Van Essen, 1983). In the
present paper, we show that MT neurons provide a burst of in-
formation about motion direction on the 100 msec time scale
needed to drive pursuit behavior and that this information is
carried by just a handful of spikes. Still, the precision of pursuit
behavior requires pooling information from many individual
neurons.

Materials and Methods
Physiological preparation. Extracellular single-unit microelectrode re-
cordings were made in area MT of three anesthetized, paralyzed macaque
monkeys (Macaca fasicularis). Surgery, monitoring, and preparations for
electrophysiological recording were performed using methods described
by Priebe et al. (2002). Briefly, anesthesia was induced with ketamine
(5–15 mg/kg) and midazolam (0.7 mg/kg) and continued under isoflu-
orane (�2%) and oxygen during surgical procedures. The animal’s head
was immobilized in a stereotaxic frame, a small craniotomy was per-
formed directly above the superior temporal sulcus (STS), and a small
portion of the dura was reflected to allow electrode penetration. After
completion of the surgical procedures, anesthesia was maintained
throughout the experiment with an intravenous opiate, sufentanil citrate
(8 –16 �g � kg �1 � hr �1). After a stable anesthetized state had been con-
firmed and followed for several hours, the paralytic agent vecuronium
bromide (Norcuron, 0.1 mg � kg �1 � hr �1) was given intravenously to
minimize eye movement. The electrocardiogram, electroencephalo-
gram, autonomic signs, and rectal temperature were monitored contin-
uously to ensure the anesthetic and physiological state of the animal. The
upper eyelids were sutured to the stereotaxic frame to maximize the
visual field. Pupils were dilated with topical atropine, and the corneas
were protected with lubricated �2D gas-permeable lenses. Supplemen-
tary lenses were selected by direct opthalmoscopy to make the lens con-
jugate with the display. The locations of the foveae were recorded using a
reversible opthalmoscope. Contact lenses were cleaned and relubricated,
and the fovea was remapped as needed during the experiment.

We used a vertical approach to area MT. Tungsten-in-glass electrodes
(Merrill and Ainsworth, 1972) were positioned by a hydraulic microma-
nipulator. After the electrode was in place, saline and agarose were placed
over the craniotomy to protect the surface of the cortex and reduce
movement of the brain. Electrodes were driven down through cortex on
the anterior bank of the STS, across the lumen of the STS, and into area
MT. Extracellular neural activity was amplified, bandpass filtered (100
Hz to 10 kHz), and displayed on a storage oscilloscope. Single units were
isolated with a dual-window discriminator (DDIS-1; Bak Electronics,
Germantown, MD).

Experiments lasted for �100 –144 hr. The units included in this study
are from three monkeys. The results of other experiments on the same
neurons have been reported in a series of previous papers on other issues
(Priebe and Lisberger, 2002; Priebe et al., 2002, 2003). The location of
unit recordings in MT was confirmed by histological examination of the
brain after the experiment as described by Lisberger and Movshon
(1999). All methods had received previous approval by and were in com-
pliance with the regulations of the Institutional Animal Care and Use
Committee at University of California at San Francisco.

Stimulus presentation. Stimuli were presented on high-resolution an-
alog display oscilloscopes (models 1304A and 1321B, P4 Phosphor;
Hewlett-Packard, Palo Alto, CA) driven by a personal computer (PC)-
based digital signal processing (DSP) board (“Detroit” system; Spectrum
Signal Processing, Vancouver, Canada). The use of an analog oscillo-
scope afforded fast refresh rates (250 or 500 Hz), and the 16-bit digital-
to-analog converters on the DSP board allowed 64,000 � 64,000 pixel
resolution. Stimuli consisted of random dot textures moving through a
square aperture in a field of stationary random dots. Both the moving
and stationary textures had densities of 0.75 dots per square degree, and
the virtual borders of the aperture were imperceptible when the center

texture was stationary. Dot motion was coherent, with uniform velocity.
After a single unit had been isolated in area MT, its receptive field was
mapped by hand on a tangent screen. Once the location of the receptive
field had been determined, we positioned a mirror so that the receptive
field was centered on the video screen. The screen was 68 cm from the eye
and subtended a 20° � 20° area. Stimuli were displayed monocularly.
Experiments were performed in a dimly lit room. The background lumi-
nance of the display was �1 mcd/m 2. All MT neurons in our study had
receptive fields that were centered within 10° of the fovea.

Experiments consisted of a sequence of brief trials with an intertrial
interval of �700 msec. For all trials, both the surround and the center
texture appeared and remained stationary for 256 msec. The center tex-
ture then moved at a constant velocity for 256 msec while the surround
texture remained stationary. Both textures then remained stationary for
another 256 msec before they were extinguished. When moving dots
reached one edge of the window delineating the moving texture, they
were extinguished and replaced by a new dot that appeared at a random
location on the opposite border.

Before collecting the data needed to explore the time course of the
representation of motion direction in MT, we conducted a series of
experiments designed to optimize the visual stimulus for the receptive
field of the neuron under study. First, we characterized the preferred
direction of the cell by randomly interleaving trials that presented eight
directions of motion. Second, we assessed the preferred speed of the cell
with motion in the preferred direction at 11 speeds ranging from 0.125 to
128°/sec. Third, because the responses of neurons in MT can depend on
the size of the moving texture (Allman et al., 1985), we optimized the size
of the center patch of moving dots: we presented stimuli of the preferred
direction and speed with motion in center textures that subtended 2.5°,
5°, 10°, 15°, or 20° and chose the aperture size that yielded the largest
response. Finally, to confirm that the mirror was correctly centered on
the receptive field of the neuron under study, the receptive field was
mapped with 4° � 4° patches of dot motion of the preferred direction and
speed. Often the last two steps of the stimulus optimization were iterated
to ensure that the strongest response was being elicited from the MT
neuron. Only those units that failed our isolation criteria were rejected
from additional recording and analysis; as long as they responded to the
moving dots, no units were rejected from our sample on the basis of
response amplitude or directional tuning criteria.

To obtain the data analyzed in detail in this paper, we characterized
direction selectivity on one of two finer grids of directions of motion.
For 24 neurons, the directions of motion were �90° relative to the pre-
ferred direction with a spacing of 15° (13 stimuli). For 12 neurons, we
added directions on a 7.5° spacing at �7.5° and �52.5° relative to pre-
ferred direction (17 stimuli). The stimulus set also included a control trial
that presented stationary dots. Stimuli were presented in blocks of trials,
in which each block presented all stimuli in an experiment once, and the
stimulus order was shuffled before each new block. Each stimulus was
repeated up to 222 times for a given neuron. Dot placement within the
texture was determined independently for each trial by starting with a
new random seed.

Data acquisition and initial analysis. Experiments were controlled by a
UNIX workstation (DEC Alpha). The workstation sent commands to a
Pentium PC that both generated the stimuli and recorded the data. A
hardware window discriminator was used to convert the action poten-
tials to transistor–transistor logic (TTL) pulses, and the time of each TTL
pulse was recorded by the computer with 10 �sec resolution. After each
trial, data were sent via the local area network to the UNIX workstation
and saved for later analysis along with a record of the commands given to
generate the stimulus.

Data were analyzed using Matlab (MathWorks, Natick, MA). In prep-
aration for the information theoretic analysis, the unit responses were
sorted according to the direction of motion of the visual stimulus and
aligned at stimulus appearance so that spikes could be counted in 2 msec
bins for each stimulus. We used equal numbers of trials for each stimulus
direction in all analyses. To compute transient/sustained ratio of firing
rate, we corrected for background rate by subtracting the average spike
count during the presentation of a stationary pattern from each average
response (following Lisberger and Movshon, 1999) and then calculated
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the maximal response in a sliding 26 msec window within 170 msec of
motion onset divided by the mean response in the interval from 156 to
256 msec after response onset.

To compute latency for analysis of the relationship between latency
and direction of target motion, the neural responses were binned in 10
msec intervals, and the mean and SD of the background rate were com-
puted from the response to the stationary dot pattern in the first 256 msec
of each stimulus condition. Latency was taken as the first bin in the first
run of four bins for which the response exceeded the background firing
rate by two SDs (Raiguel et al., 1999). Although we began all information
theoretic calculations at stimulus motion onset, we reference many of
our measurements to the onset of the neural response to motion. To
determine the response onset time, we averaged all responses to all direc-
tions of motion together and then marked response onset by eye. Because
of the differences in the analysis method, the response onset time for the
full set of stimuli differed slightly from the minimum latency for some
units.

Information theoretic analysis. Our goal was to characterize not just the
distributions of spike count themselves but rather the average extent to
which the neural response allows us to identify the stimulus. We did this
with information theory (Shannon and Weaver, 1949), by computing the
information directly from the measured spike counts in different time
intervals ( T) as follows:

Icount�T� � IT�n;�� � �
�

P����
n

PT�n���log2�PT�n���

PT�n� � , (1)

where:

PT�n� � �
�

P�� � PT�n�� �. (2)

Icount( T) quantifies in bits the amount of information that a single ob-
servation of the spike count, n, provides about the direction of motion, �,
and PT(n) is the total probability of observing n spikes after counting over
a time interval, T, averaged over all stimuli. In our case, all stimuli oc-
curred with equal probability, P(�).

We now give a brief, intuitive explanation of Equations 1 and 2. The
mutual information between response and direction of motion is deter-
mined by quantifying the uncertainty, or variability, of the neural re-
sponses in units of bits by expressing them as an entropy. The entropy, S,
of a probability distribution P(n) over a time interval T is given by the
following:

ST�P�n�� � � �
n

PT�n�log2PT�n�. (3)

The entropy of the response is the upper bound on the amount of infor-
mation a cell can transmit about the stimulus, i.e., its coding capacity.
Intuitively, the distribution of counts determines the number of different
responses or “symbols” that the cell can use to encode aspects of the
stimulus. The entropy of the count distribution is itself constrained by
the average count: 	n( T)
. The higher the firing rate, the greater the range
of counts that can be observed and, therefore, the more symbols available
to encode the stimulus parameter. The maximal entropy can be ex-
pressed in terms of the average count at a given time (Rieke et al., 1997),
as follows:

ST�n� � log2�1 � 	n�T�
� � 	n�T�
log2�1 � 1/	n�T�
�. (4)

For each �i in our stimulus set, we expressed the variability of the neural
response to repetitions of that stimulus, P(n �i), as a conditional entropy,
S(P(n �i)), as in Equation 3. The amount by which recording a certain
spike count, n, reduces our uncertainty about the direction of the stim-
ulus, �i is the information gained in bits, or the difference between the
entropies, as follows:

I��i� � S�P�n�� � S�P�n��i��. (5)

Computing I(�i) for each �i in our stimulus set yielded graphs like that
shown in Figure 1 A. The mutual information then is the weighted aver-
age of the information over all stimuli, as follows:

I�n;� � � �
i

P��i�I��i�. (6)

Equation 6 expands to Equation 1.
All analyses used a procedure to minimize the effects of finite sample

size on our estimates of information. By randomly drawing different
numbers of samples ( N) from our total trial set for each neuron, we
looked for the expected systematic behavior, as follows:

Iest � I� �
a

N
�

b

N2 � · · ·, (7)

and extracted I� as our best estimate following the methods of Strong et
al. (1998) (see also Panzeri and Treves, 1996). The number of repeats in
our dataset gave reasonable linear behavior keeping first-order terms in
N only (Fig. 1 B). Note that the extrapolated estimate of information for
an infinite dataset is always smaller than the value measured from a finite
data set.

We computed information about direction (1) from cumulative spike
count from the start of stimulus motion, (2) from spike counts in bins of
different durations, and (3) on the basis of normalization for the number
of spikes in the counting interval. For analysis of information per spike,
the spike count was computed from the same trials used to compute
information at each stage of the bootstrapping routine. If fewer than
three spikes occurred in a given time window, so that the average count
was less than three divided by the total number of trials, then the infor-
mation per spike was set to zero. Error bars for all quantities were ob-
tained by computing the SD of information computed from bootstrap-
ping with half of the total trials. We confirmed that analysis of synthetic
data in which trials had been randomized with respect to stimulus iden-
tity yielded estimates of information that were not statistically different
from zero.

Other forms of data analysis. To analyze the autocorrelation of the
spiking within trials, we computed the “shuffle-corrected” correlation
function of the spike trains, corresponding to what is known in physics as
the “connected” correlation function for time lags from 2 to 500 msec.
For each trial, we binned the 768-msec-long spike trains in 2 msec bins,
including the data from the intervals when the visual stimulus was both
stationary and moving. The autocorrelation of the number of spikes per
bin was computed from all of the trials for a given motion direction by
computing the within-trial correlation both forward and backward in
time for each time point in each trial and then averaging across all trials.
If the start point for a given lag time was �500 msec from the end or start
of the trials, then only the available bins were included in the average,
yielding a different number of samples for each lag. To compute the

 

Figure 1. Methods for computing mutual information. A, Symbols connected by lines show
the mean contribution of each stimulus direction to the mutual information as a function of
stimulus direction for one MT neuron. The horizontal line shows the average information across
direction. B, Extrapolation of information to remove the effects of finite data sets. Symbols show
the information computed as a function of the inverse of the fraction of the data set used for the
computation. The dashed line shows the result of linear regression analysis. Error bars show the
SD obtained from bootstrapping with half of the data sample.
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shuffle-corrected correlation function of the spike trains, we computed
the autocorrelation function of the spike trains within each trial, aver-
aged over trials, and subtracted the autocorrelation function of the aver-
age time-dependent firing rate. The analysis was done separately for each
direction of motion. We smoothed the functions with a sliding 20 msec
window and normalized separately for the average firing rate in each
direction, so that the correlation function can be interpreted as a condi-
tional firing rate and has units of spike per second (Rieke et al., 1997, their
Appendix A.2). We used bootstrapping to estimate error bars for the
autocorrelograms: SDs were computed for autocorrelations computed
from random draws of half of the trials.

To further assess the statistical significance of the connected (shuffle-
corrected) autocorrelation function, we performed the same calculations
on time-shuffled or “synthetic Poisson” spike trains for each neuron.
These were generated by drawing the value of count in each 2 msec time
bin randomly from the set of all responses in that bin for all trials that
presented the same direction of motion. The resulting synthetic spike
trains have the same average time-dependent firing rate as the real neu-
ron, but no other correlations across time, so that they are equivalent to
an inhomogeneous, or time-dependent, Poisson process. In particular,
the spike counts in non-overlapping time windows will fluctuate inde-
pendently around mean values determined by the time-dependent firing
rate. Finally, we analyzed the discriminability of direction for each MT
neuron by computing the information about direction for all pairs of
directions in our stimulus set. Pairs of stimuli differed by angles that
ranged from a minimum of 7.5° or 15° to 180°. To relate the information
about direction to the “percent correct” measure (Green and Swets,
1966) that is traditionally used to report discrimination in two-
alternative forced-choice paradigms, we used the following equation:

I � 1 � Pclog2Pc � �1 � Pc�log2�1 � Pc�. (8)

If we assume symmetric error probabilities in misidentifying two stimuli,
then Equation 8 describes the relationship between mutual information
in bits ( I) and probability of a correct choice or percentage correct, (Pc)
for a pair of stimuli. The estimate of (Pc) obtained with this approach is
an upper bound on the actual probability of a correct choice, computable
by signal detection theory (receiver operating characteristic or ROC
analysis) for two conditional probability distributions of any shape
(Green and Swets, 1966).

Results
Properties of averaged responses
MT neurons respond to steps of stimulus
speed with a time-varying firing rate
whose average shape and onset timing de-
pends on motion direction. For stimuli
moving at or near the preferred direction
(Fig. 2A), the response is often character-
ized by a high spike rate transient followed
by a lower sustained response (Lisberger
and Movshon, 1999). As the direction of
the stimulus is varied, the average response
amplitude and the latency of the response
both vary (Fig. 2B). Responses are stron-
ger, and variability of the spike count high-
est, for motion in the preferred direction.
Both are smaller for stimuli moving in
nonpreferred directions (Fig. 2C). The av-
erage firing rate during the response to
preferred direction texture motion for our
sample ranged from 4 to 163 spikes/sec
with a mean of 45 spikes/sec. The latency
of the response tends to be shortest for di-
rections near the preferred direction and
increases as a function of the difference be-
tween direction of motion and preferred
direction. As shown in Figure 2D, the
amount of increase in latency ranged

across the population: stimuli that moved in a direction 45° from
the preferred direction caused responses at latencies that were
10 –140 msec longer than for motion in the preferred direction:
mean and median increments in latency were 37 and 20 msec.
The rare examples of very long latencies result from the applica-
tion of an objective latency measurement to weak responses and
do not reflect “off responses” to motion in nonpreferred direc-
tions, which are rare in MT neurons. Our data on the direction
tuning of response amplitude and latency agree with previous
studies of MT (Maunsell and Van Essen, 1983; Raiguel et al.,
1999).

To characterize the effect of stimulus direction on the shape of
the time-varying firing rate, we computed the transient/sustained
ratio as defined in Materials and Methods. In the preferred direc-
tion, the transient/sustained ratio ranged from 0.3 to 6.4 for our
sample of MT neurons (mean, 2.1; median, 1.6). Ten of 36 cells
showed a transient/sustained ratio greater than the mean. The
maximal transient response did not always occur for motion in
the preferred direction: the neuron shown in Figure 2 had a tran-
sient/sustained ratio of 1.6 for target motion in the preferred
direction and of 2.8 for target motion that was 15° from the
preferred direction (Fig. 2A). However, there was no consistent
tendency for the transient/sustained ratio to vary as a function of
direction across our sample of MT neurons.

Information about direction of motion from counting spikes
The analysis of average firing rate and response timing in the
previous section reveals how the mean number of spikes fired by
individual neurons varies with the direction of stimulus motion.
In the present section, we are concerned with the inverse ques-
tion: how much can we learn about the direction of stimulus
motion by observing a single response of an MT neuron to a
single stimulus? In intuitive terms, this is a question of signal
versus noise. Consider the data illustrated in Figure 2C. If we
observe a total spike count of 14 spikes, we can say with high

Figure 2. Directional responses of MT neurons. A–C show data from the same neuron. A, Top to bottom, The rasters show the
responses to 184 repetitions of the same stimulus, the trace labeled “speed” shows the time course of the step of stimulus speed,
and the trace labeled “Firing rate” shows the average response for all 184 repetitions. Stimulus was at the preferred speed,
direction was 15° from preferred direction, and the duration of the target motion was 256 msec. B, Time course of mean firing rates
for 13 directions of stimulus motion. The asterisk indicates the direction shown in A. C, Direction tuning of the total spike count in
the interval from 0 to 256 msec after the start of the response to stimulus motion. Error bars show SDs. D, Effect of stimulus
direction on response latency for multiple MT units. The preferred direction for each neuron was plotted at 0° on the x-axis.
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probability that the stimulus moved in the preferred direction of
the neuron. If we are attempting to discriminate motion in direc-
tions 0° and 45°, we can do so almost perfectly by observing the
responses of the neuron illustrated in Figure 2C, because the
distributions of spike counts for these two directions (indicated
by the error bars) do not overlap. We chose to use information
theory to quantify these observations because it does so with a
single, well understood metric that is valid for all distributions of
response values.

Figure 3 shows responses of one MT neuron as a function of
the time since the onset of stimulus motion for target motion at
the preferred direction and 30° away from preferred direction. As
shown by others, there is a latency of �80 msec from the onset of
stimulus motion to the onset of the neural response. Thereafter,
firing rate shows a rapid increase that depends on the direction of
motion (Fig. 3A), with a larger and earlier response for motion in
the preferred direction (bold trace) than in a nonpreferred direc-
tion (�30°, thin trace). For the same two directions, the mean
cumulative spike counts (Fig. 3B) are near zero before the re-
sponse begins, indicating an absence of spontaneous activity in
this neuron. Cumulative spike count then increases throughout

the time of stimulus motion with time-varying slopes that de-
pend on the firing rate for each stimulus. The number of spikes
fired by a given time is highly variable, as indicated by the over-
lapping SDs of the cumulative counts for these two directions.
Although the cumulative spike count increases throughout the
stimulus presentation for each direction of motion that elicited a
response, information about the direction of motion does not
increase at a constant rate. Direction information (Fig. 3C) rises
sharply early in the response and subsequently increases much
more slowly. For the neuron illustrated in Figure 3, information
about direction reached 84% of its maximal value in the first 100
msec of the response.

Two different ways of analyzing the data from our full sample
of MT neurons show that information about direction almost
always accumulates most rapidly early in the response, after just a
few spikes have been fired. In Figure 4A, each symbol summa-
rizes responses of an individual neuron and plots information
256 msec after response onset versus information 100 msec after
response onset. Most neurons plot just above the line of slope 1,
indicating that only slightly more information is available after
counting spikes for 256 msec than after counting for only 100
msec. If we consider only the neurons with �0.2 bits of direction
information, then on average 78% of the maximum amount of
information obtainable from counting spikes for 256 msec is
available 100 msec after response onset (range, 50 –113%; n 

26). The rapid approach to maximum information does not rep-
resent a limit imposed by the stimulus entropy: information
about direction in the discharge of MT neurons always was well
below the 3.7 or 4.09 bits of direction information contained in
the stimulus sets of 13 or 17 stimuli.

Figure 4B replots the data from each of our neurons in a way
that shows how information about direction accumulates as a
function of the number of spikes the neuron has fired. To obtain
the values on the x-axis, we averaged the responses across all
directions of motion in the stimulus set and determined the av-
erage cumulative spike count at each time in 8 msec increments.
The fractional values of average cumulative spike count on the
abscissa should not be a concern: a value of 0.1 means that a single
count was present in that bin for 1 of 10 trials, on average. To
obtain the values on the y-axis, we computed direction informa-
tion from the cumulative spike count at each 8 msec time step and
normalized by the maximum value of information throughout
the response. We then plotted normalized information as a func-
tion of average cumulative spike count for each 8 msec bin in our
averages. For every neuron, direction information rose quickly,
usually reaching or coming close to the maximum before three
spikes had been fired, on average. In one-third of our sample (12
of 36), more than half of the maximum information was available
once an average of one spike had been fired.

Coding capacity and efficiency of MT neurons
One of the features of Figure 4A is wide variability among neu-
rons in the peak amount of information about direction. Some
neurons can provide just over 1 bit of information out of the
3.7– 4.1 bits in the stimulus set, whereas others provided only a
fraction of a bit. The variability among MT neurons raises the
question of whether all MT neurons have the same intrinsic ca-
pacity to transmit information and, if so, what fraction of that
capacity is used for the stimulus set we provided as visual stimuli.
To answer this question, we next compute the response entropy
or coding capacity from the spike count for each MT neuron in
our sample.

Figure 5 shows that the coding capacity of all cells in the pop-

   
 

   
  

   

  

Figure 3. Time course of cumulative spike count and information for a representative MT
neuron. A, Time course of average firing rate for two directions of stimulus motion. B, Time
course of cumulative spike count for the same two directions. Continuous and dashed lines show
mean and one SD. In A and B, the bold and fine lines show responses for motion in the preferred
direction and 30° off preferred direction. C, Time course of mutual information about motion
direction from cumulative spike count. The variable thickness of the line indicates the time
course of the SD of information.
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ulation is near the theoretical maximum limit imposed by their
average firing rate (Eq. 4). The thin lines in Figure 5 show the
entropy of the spike count distribution (Eq. 3) for our sample of
MT neurons as a function of the average number of spikes fired
with time during the response. Despite substantial differences in
the details of the neural responses among the different cells in our
sample, the entropy as a function of mean count is almost the
same for all neurons, and their capacities are quite close to the
theoretical limit set by Equation 4 (bold line). The peak coding
efficiencies for direction of motion, defined as the maximum
information about direction divided by the response entropy,
ranged from 3 to 40% in our sample (mean, 20%). Figure 5 also
illustrates that the capacity to carry information grows sublin-
early with the spike count, a factor that will make a minor con-
tribution to the fact that MT neurons reach �80% of maximal
information about direction within the first 100 msec of the neu-
ral response.

Possible reasons for the rapid saturation
of information about direction
of motion

The previous section shows that the fail-
ure to gain substantial additional infor-
mation about motion direction after the
first 100 msec of neural responses cannot
be attributed to saturation at the maxi-
mum coding capacity of the MT neuron.
We next show that it also cannot be at-
tributed to a decrease in directional tun-
ing as a function of time during stimulus
motion or to special properties of the
transient response shown by many MT
neurons for the onset of motion.

We quantified direction tuning by
computing the average spike count dur-
ing the first and second 100 msec period
after the onset of the response as a func-
tion of direction of motion and fitting
the data from each time period with a
Gaussian function. As shown in the two
examples in Figure 6, B and C, the tuning

bandwidth, quantified as 2� from the Gaussian fits, did not
change consistently as a function of time. For the cell in Figure
6 B, the bandwidth decreased by 3° and the preferred direction
shifted by 15° in the second 100 msec after the onset of the
response (gray curve) compared with the first 100 msec (black
curve). For the cell in Figure 6C, the bandwidth increased by
23° and preferred direction did not shift. Figure 6 A summa-
rizes the data from the full population by plotting tuning
bandwidth in the second 100 msec interval after the onset of
the neural response to motion versus that in the first 100 msec
after the response onset. Some of the cells with broader tuning also
showed different bandwidths at different times, but the data were
nearly equally spaced around the line of slope 1, indicating that di-
rection tuning was maintained throughout the response across our
sample of neurons.

To test whether the early saturation of information is a
consequence of the initial transient response of many MT
neurons for the onset of motion, we compared the time course
of information about direction when we started counting
spikes before versus after the initial transient response. Figure
7A shows that information rose quickly and saturated whether
we started counting spikes and computing information about
direction from the onset of stimulus motion (black), at the
beginning of the sustained component of the response (me-
dium gray), or 52 msec later (light gray). In the example of
Figure 7A, however, the maximum information from count-
ing spikes did depend on when we started counting, indicating
that the initial transient response may make a special contri-
bution to information about the direction of motion. Figure
7D shows that the same feature of information time course was
maintained across the population of cells we recorded.
Whether we started counting spikes at the onset of stimulus
motion (open circles), at the start of the sustained interval
(open triangles), or 52 msec later (open squares), the points lie
just above the line of slope 1, indicating that the information
available 256 msec after the start of the neural response is only
slightly greater than that available 100 msec after the start of
the analysis window.

Figure 4. Population summary of the time course of information from cumulative spike count. A, Information available 256
msec after response onset is plotted against that available at 100 msec. Each symbol shows measurements from one neuron, and
the dashed line has unity slope. B, Each curve shows data from one MT neuron and plots information from cumulative spike count
as a function of the cumulative spike count averaged across directions. Thus, time runs to the right along the x-axis as spike count
increases. Information has been normalized for the maximum information provided by each neuron. Neurons were included (n 

27) if they provided�0.2 bits of information about direction. The bold curve plots data from the example neuron shown in Figures
2 and 3.

Figure 5. Coding capacity (entropy) of neural responses in MT. The fine curves show the
entropy of spike count distributions as a function of the average spike count across all directions
for 36 MT. The bold line shows the maximum entropy as a function spike count (Eqs. 3, 4).
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Information about direction from spike counts in brief
time bins
Until now, we examined the information about direction in cu-
mulative spike counts. We next ask whether different parts of the
neural response contribute differentially to the accumulation of a
direction estimate in MT by computing information from spike
counts in discrete time bins. When we counted spikes in non-
overlapping 20 msec bins, the information about direction from
the neuron shown in Figure 7B was greatest during the onset
transient but settled to a sustained level that endured throughout
the response to stimulus motion. The scatter plot in Figure 7E
shows that this was true throughout our sample of MT neurons:
information about direction was larger during the transient than
the sustained response but remained steady throughout the sus-
tained response. In 20 of 36 neurons, an individual 20 msec bin
provided more than half of the total information available from
counting spikes for 256 msec.

More information about direction might be encoded in time
bins during the response onset transient because either there are
more spikes in the transient or the spikes themselves are individ-
ually more informative. Figure 7C plots the time course of infor-
mation in 20 msec bins, normalized by the average count in each
bin over all directions, for the same MT neuron shown in Figure
7, A and B. The information per spike was slightly higher during
the transient compared with the sustained period, indicating that
the first spikes of the neural response were slightly more infor-
mative about motion direction. Across the population, the infor-
mation per spike in the transient response was similar to that in
the sustained period but was somewhat larger in many neurons
(Fig. 7F). When evaluated in 20 msec bins for the 27 neurons that
provided �0.2 bits of information about direction, the informa-
tion transient/sustained ratio was significantly correlated to the
firing rate transient/sustained ratio (r 
 0.76; p � 10�5), but the
information per spike transient/sustained ratio was not. Further-
more, there was no correlation between the transient/sustained
ratios for information and information per spike. The quantita-

tive summary analysis in Table 1 shows that the mean transient
sustained ratios for information per spike were �1, indicating
that much but not all of the “extra” information available in small
time windows near the start of the response can be attributed
simply to the fact that these windows contain more spikes.

The bin width chosen for analysis had an impact on the exact
value of information we calculated, but changes in the bin width
from 4 to 64 msec did not alter the general conclusion. The data
in Figure 7 were analyzed using a bin width of 20 msec. As illus-
trated in Table 1, both the peak information and sustained infor-
mation obtained by counting spikes increased as bin width in-
creased from 4 to 64 msec, whereas the information per spike
decreased. The information transient/sustained ratio, defined as
the peak information during the first 100 msec of the response
divided by the average information during the rest of the re-
sponse, decreased as bin width increased for both the total infor-
mation in bits and the information per spike. However, it re-
mained statistically larger than one even for the largest bin widths
of 64 msec.

Within-trial correlations in spike counts
In this section, we show that correlations in the fluctuation of
spike counts across different time intervals within individual tri-
als is one major reason why information fails to accrete substan-
tially through counting for �100 msec. We show this feature of
the data by (1) analysis of the relationship between the variance
and the mean spike count in bins of different durations, (2) eval-
uation of the variation in spike count across and within trials, and
(3) direct assessment of the correlations in spike count across
time in individual trials.

First, we computed the Fano factor, defined as the variance of
spike count divided by the mean spike count. If there are corre-
lations in spike count across time within individual trials, then
there would be more variation in spike count between trials than
within trials and the Fano factor should increase as a function of
the duration of the interval used to count spikes. Figure 8A plots
the Fano factor as a function of time for a representative MT
neuron, including responses for all directions of stimulus mo-
tion. The Fano factor measured in bins with widths of 20 msec
(open circles) and 50 msec (filled triangles) remains close to unity
throughout the time of stimulus motion, as would be expected if
spikes were generated by an approximately Poisson process.
However, the Fano factor of the cumulative spike count is greater
than one and increases as the effective bin width is increased by
counting longer into the trial (thin line).

Accumulating the distributions of Fano factors across all MT
neurons and all bins in our analysis shows that this effect holds
across the population (Fig. 8D). For 10 msec time bins (heavy
black line without symbols), the distribution of Fano factors is
narrow and peaks at unity, with a significant fraction of sub-
Poisson events. For 100 msec bins (thin gray curve) and the whole
256 msec response (solid curve with symbols), the distributions
are broader and contain many examples in which the Fano factor
was greater than unity. Thus, on average, the Fano factor grows
with the size of the time window over which spike count statistics
are computed, implying that there are correlations in the trial-by-
trial fluctuations in spike count that span the duration of the
response.

Second, we evaluated trial-to-trial changes in the responsive-
ness to a single stimulus. For example, Figure 8B plots the total
spike count as a function of trial number for the responses of one
neuron to stimulus motion in its preferred direction. Although
the mean appears fairly stationary for the duration of the exper-

  
   

Figure 6. Absence of change in tuning bandwidth with time during response. A, Tuning
bandwidth in the first 100 msec of the response plotted as a function of bandwidth in the second
100 msec of the response. Each symbol summarizes data from one neuron of the 33 for which a
tuning curve could be fitted. Three cells were omitted because they had atypical tuning band-
widths that were �400° or �20°. Bandwidth was defined as twice the SD of the Gaussian
function that provided the best fit to the mean spike count as a function of stimulus direction.
The dashed line has slope of 1, and the continuous line is the best linear fit through the popu-
lation assuming equal variance in both ordinate and abscissa (type II linear regression): slope,
1.2 � 0.2; intercept, �5 � 19°. B, C, Mean firing rate is plotted as a function of stimulus
direction for two units in our sample. Black and gray curves show Gaussian fits to the first and
second 100 msec of the responses. The filled triangle and circle in A show measurements for the
two neurons illustrated in B and C, respectively.
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iment, the total spike count for the entire 768 msec of individual
trials fluctuated considerably from trial to trial: the mean spike
count across the 180 trials was 11.1 spikes, and the SD was 4.9
spikes, yielding a Fano factor of 2.2. For the entire sample of MT
neurons, the SD of the total spike count during 256 msec of target
motion in the preferred direction ranged from 1.5 to 22.5 spikes,
with a mean value of 5.4 spikes. The Fano factor ranged from 0.8
to 10.4 (mean of 3.6).

As an additional test of whether fluctuations in spike counts
within different portions of the response were correlated across
time, we analyzed the first and second 128 msec of each response
separately. In each half of each trial, we computed the difference
between actual spike count and the mean count across all trials in
the time window. We then made plots like that in Figure 8C, in
which the level of gray indicates the number of observations of
each joint deviation of count from the mean in the first and
second halves of the response. If the intensity of the grays is
greatest near the line of slope 1, as in Figure 9C, then there is a
correlation across time. The correlation means that a neuron
tends to fire more (fewer) spikes in the second half of the response
if it also fires more (fewer) spikes than average in the first half of
the response. Deviations in the count from the mean were mod-
estly but significantly correlated in the two time windows across
our sample ( p � 10�7, comparing correlation coefficients from
shuffled versus actual data). For the neuron used to create Figure
8C, the linear correlation coefficient for preferred direction mo-
tion was 0.51, close to the sample mean of 0.4 and similar to
results found in MT neurons of awake monkeys by Uka and
DeAngelis (2003). The magnitude of the correlation coefficient

did not vary strongly as a function of direc-
tion within 60° of the preferred direction.

Third, we analyzed the time scale of
temporal correlations in firing rate by
computing the connected (shuffle-
corrected) autocorrelation function (see
Materials and Methods) for the responses
of each neuron to stimulus motion for
each stimulus direction. For the neuron
responding to preferred direction motion
illustrated in Figure 8E, the autocorrela-
tion of the actual spike trains showed sig-
nificant correlations out to �200 msec
(bars with symbols). The synthetic Poisson
autocorrelation, shown by the bars with-
out symbols in Figure 8E, was not statisti-
cally different from zero across the analysis
window. For our sample of MT neurons,
the normalized, connected (shuffle-
corrected) correlation functions had val-
ues that were broadly distributed between
0.6 and 21 spikes/sec at 100 msec lag (Fig.
8F, gray bars), with a mean of 6.2 spikes/
sec. The tight grouping around zero at the
same time lag for the synthetic Poisson
data (Fig. 8F, black bars) indicates that
such correlations cannot arise at random
in a data set of this size. If we express the
connected autocorrelation at 100 msec lag
as a fraction of the time-averaged firing
rate in the preferred direction, our sample
ranged from 2 to 100%, with a mean of
24% and a median of 16%. The connected
autocorrelation functions were fit well

with an exponential function:

r�t� � A � Be�t/�, (9)

where the values of the parameters were as follows: time constant
(�) of 47–909 msec, mean of 162 msec; B, 0.7–56 spikes/sec, mean
of 16 spikes/sec; A, �2.7 to �3.3 spikes/sec, mean of �0.3 spikes/
sec. Note that the data in Figure 8F were based on analysis of
responses for all directions of stimulus motion.

Information about direction in spike trains with temporal
correlations removed
Figure 9 verifies the expectation that removing the correlation
within trials allows information about direction to accumulate
throughout the duration of the stimulus. For each neuron, the
data for each direction of target motion was shuffled indepen-
dently in each time bin according to the strategy outlined in
Materials and Methods, generating a synthetic Poisson analog of
the original spike train. The time course of information about
direction from the cumulative spike count in these data are
shown for one neuron in Figure 9A, illustrating a steady rise of
information throughout the stimulus for the synthetic Poisson
data (black) compared with the actual data (gray). In the shuffled
data, only 64% of the final value of information is available 100
msec after the onset of the response, whereas 84% was available in
the actual data.

We summarized the effects of temporal decorrelation on the
accumulation of information over time in two ways. First, for
each neuron, we measured how much information is accumu-

 

 
 

Figure 7. Analysis of the time course of information for spike counts in different analysis intervals and bins. A, Time course of
information about direction from cumulative spike count starting at different times: the black, dark gray, and light gray lines show
the mean and SD of information when counting started from motion onset, the beginning of the sustained response, and 50 msec
after the beginning of the sustained response. The symbols next to each curve indicate the shapes used to plot the population
summaries in D. B, Time course of information from spike counts in 20 msec bins. C, Time course of information in non-overlapping
20 msec bins normalized for the number of spikes in each bin. In B and C, error bars show SDs. A–C show analyses from the same
neuron. D, Information for 100 msec after the beginning of the counting window is plotted as a function of the information 256
msec after response onset. Each neuron is represented by three points: an open circle, open triangle, and filled circle for analyses
that began at motion onset, the start of the sustained response, and 50 msec later. E, Population summary (n
36) of information
about direction from spike counts in 20 msec bins. Each point shows data from one neuron and plots peak information in the
transient period versus the average information in the sustained period. F, Population summary of normalized information from
spike counts in 20 msec bins. Each symbol shows data from one neuron and plots peak information per spike in the transient period
versus the average information per spike in the sustained period. In E and F, filled circles and open squares show neurons with
transient/sustained ratios of firing rate greater or less than 1.6. In D–F, the dashed line has a slope of 1.
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lated in the 200 msec interval between 56
and 256 msec after response onset for the
actual and the synthetic Poisson data.
When the information accumulated from
the decorrelated spike trains is plotted as a
function of that from the real data (Fig.
9B), almost all of the neurons plot above
the line of slope 1, indicating that remov-
ing the within-trial correlations in firing
rate allows a larger accumulation of infor-
mation during the sustained part of the
response. Second, we repeated the graph of
Figure 4B for the synthetic Poisson data.
Figure 9C plots information 256 msec after
the onset of the response as a function of
information 100 msec after response on-
set, with each MT neuron represented by
two data points. The information mea-
sured from the shuffled data (filled sym-
bols) plotted above that from the actual
data (open circles), indicating a greater ac-
cumulation of information during the sus-
tained period in the decorrelated data than
in the actual data.

Direction discrimination by
MT neurons
In most of the paper, we evaluated the
temporal accumulation of information
about direction and the reasons informa-
tion saturates early in the response. We
now turn to the question of how well,
rather than how quickly, MT neurons can
discriminate different directions of target
motion.

To determine the effective directional discrimination thresh-
old of MT neurons, we computed the information, or equivalent
percentage correct, for pairs of directional stimuli. Inspection of
tuning curves like that in Figure 2C supports the intuitive expec-

tation that any given MT neuron will discriminate directions that
fall on the steep flanks of its tuning curve better than directions
that straddle its peak, as found with frequency discrimination in
the auditory system (Siebert, 1968). To quantify this intuition, we
computed the information about direction for each pair of stim-

Table 1. Analysis of effect of bin width on measures of information in the transient and sustained portions of MT neuron responses

Information from counts in time windows

Bin width
(msec)

Peak information in transient period window
across cells (bits)

Mean information in sustained period
windows across cells (bits) Information transient/sustained ratio

Range Mean Median Range Mean Median n Range Mean Median

4 0.01– 0.34 0.10 0.09 0– 0.19 0.04 0.03 27 0.4–10.8 3.5 2.7
8 0.02– 0.58 0.19 0.18 0.01– 0.34 0.08 0.06 27 0.8– 8.6 3.0 2.5
16 0.03– 0.79 0.30 0.26 0.02– 0.56 0.15 0.12 27 0.6– 8.1 2.7 2.1
20 0.04– 0.83 0.34 0.28 0.02– 0.62 0.18 0.14 27 0.5–7.5 2.6 2.3
32 0.06– 0.94 0.42 0.37 0.03– 0.74 0.24 0.22 27 0.6– 6.5 2.3 2.0
64 0.11– 0.96 0.46 0.43 0.06– 0.88 0.35 0.36 27 0.4– 4.4 1.6 1.3

Information per spike in time windows

Bin width
(msec)

Peak information per spike in transient period
across cells (n 
 27) (bits/spike)

Mean information per spike in sustained
period across cells (n 
 27) (bits/spike) Information per spike transient/sustained ratio

Range Mean Median Range Mean Median n Range Mean Median

4 0–1.54 0.67 0.64 0.06–1.09 0.44 0.43 26 1.0– 6.5 2.1 1.6
8 0.04–1.44 0.66 0.70 0.06–1.04 0.44 0.43 27 0.7– 4.8 1.7 1.5
16 0.06–1.27 0.57 0.58 0.04– 0.94 0.42 0.41 27 0.6– 4.9 1.6 1.4
20 0.03–1.15 0.53 0.53 0.04– 0.92 0.41 0.39 27 0.5–5.0 1.5 1.3
32 0.04–1.01 0.43 0.46 0.03– 0.80 0.36 0.39 27 0.4–2.7 1.3 1.2
64 0.02– 0.89 0.33 0.32 0.02– 0.59 0.28 0.29 27 0.2–1.9 1.2 1.2

Figure 8. Time course of the variation of spike counts in MT neurons. A, Analysis of a representative neurons showing the Fano
factor of spike count plotted as a function of time. Open circles, filled triangles, and the curve without symbols show data when
spike counts were measured in 20 msec bins, 50 msec bins, and accumulated in 2 msec increments. The horizontal line indicates
a Fano factor of 1, expected for a Poisson process. B, Fluctuating curve shows the total spike count in the full 768 msec of each trial
plotted as a function of trial number within the experiment for all stimuli that presented motion in the preferred direction of the
neuron. A and B show data from the same neuron. The solid and dashed horizontal lines indicate the mean total spike count across
the experiment, plus and minus one SD. C, Correlations between spike counts in the first and second 128 msec of neural responses
for a representative MT neuron. Each pixel in the graph is plotted at locations on the x-axis and y-axis that indicate the difference
between the actual response and mean responses in the first and second 128 msec of the response. The value on the grayscale
indicates the joint probability of measuring a given pair of fluctuations in spike count in individual responses to preferred direction
motion. D, Summary of the analysis in A for our sample of MT neurons. Each curve shows the distribution of Fano factors across the
sample. The bold curve, fine curve, and curve with small filled circles summarize data measured in bins of duration 10, 100, and 256
msec. E, Tail of the rate normalized, connected (shuffle-corrected) autocorrelation of spike count for a representative MT neuron
responding to preferred direction motion. Filled symbols with error bars and symbol-less error bars show the autocorrelation
functions for the actual spike counts and synthetic Poisson shuffled counts. Error bars represent SDs of correlation values computed
from multiple random samples of half of the dataset. C and E show data from the same MT neuron. F, Summary of the average
values of the autocorrelation over 50 –150 msec lag. White bars and black bars show probability density distributions for actual
data and synthetic Poisson shuffled data.
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ulus directions, I(�1,�2), from the cumulative spike count binned
at 2 msec resolution. For each neuron, we constructed graphs like
those in Figure 10A, which plot the information computed from
each pair of directions as a function of their directional separa-
tion, �1 � �2, and mean direction, (�1 � �2)/2. For example, 30°
and 45° form a pair with a 15° directional separation and a mean
direction of 37.5°, whereas �7.5° and �7.5° form a 15° pair with
a mean direction of 0°. To facilitate evaluation of discrimination
of directions at different places on the direction tuning curves, we
connected the points with the same separation between direc-
tions and plotted the data as a function of the mean direction of
the pair.

For each set of connected points, information is smallest when
the mean direction is zero because the pair straddles the preferred
direction and the means and variances of the responses are sim-
ilar for each direction in the pair. Information increases as the
mean direction becomes positive or negative, because the pair
straddles a direction on the flank of the tuning curve and the
distributions of the responses to the two directions are more
separated. Information decreases again as the mean direction of

the pair of stimuli gets too large, because
the neural responses decrease and eventu-
ally are zero when the mean direction is far
from the preferred direction. Comparison
of the different curves in Figure 10A re-
veals that information increases at any
given mean direction as the directional
separation increases. Nearly all MT neu-
rons (33 of 36) had the largest values of
information, and therefore discriminated
direction best, when the mean direction of
the pair of stimuli fell on the flanks of their
tuning curves. The other three neurons
were not able to discriminate any pair of
directions. The analysis in Figure 10A is
for the first 100 msec of the neural re-
sponse. Nearly identical results were ob-
tained (but not shown) for the full 256
msec of the neural response. Averaged
across pairs and mean directions, pairwise
direction information 256 msec after re-
sponse onset is only 0.1 bit larger than 100
msec after response onset.

We used an approach outlined in Mate-
rials and Methods to relate the values of in-
formation plotted in Figure 10 to an equiva-
lent percentage correct for a discrimination
task. We defined threshold discriminability
(Fig. 10A, horizontal dashed line) as the
value of information that corresponds to
69% correct, equivalent to a signal-to-noise
ratio of 1 in the model problem of detecting a
signal against a background of Gaussian
noise (Green and Swets, 1966). Using this
threshold, the responses of the neuron
shown in Figure 10 are sufficient to discrim-
inate a 30° difference in stimulus directions
at most points on the tuning curve and a 15°
difference at a few. For the 34 of 36 cells of
our sample that could discriminate at least
one pair of stimuli, direction discrimination
thresholds ranged from 7.5° to 75°, with a
mean of 27° after 100 msec of response; the

mean fell to 21° after the full 256 msec of response.
To summarize the ability of our full sample of MT neurons to

discriminate directions, we first corrected for the fact that 24 MT
neurons were recorded with 15° directional spacing (13 direc-
tions), whereas 12 neurons had some stimuli separated by only
7.5° (17 directions). For all neurons, we interpolated the infor-
mation values for each curve in Figure 10A along the mean di-
rection axis from �60° to �60° in 7.5° steps, as if each neuron had
been sampled with the same directional spacing of 7.5°. Figure
10B uses a color value in each entry in the graph to show the
fraction of MT neurons in our sample that could discriminate a
pair of stimuli with given directional means (x-axis) and separa-
tions ( y-axis) at a level of 69% correct (I � 0.107 bits). The red
and yellow pixels in the top left and right corners of the image
show that a large fraction of the sample was able to discriminate
two stimuli with large directional separations and mean direc-
tions on the flank of the direction tuning curve. The blue columns
down the middle of the image show that few neurons were able to
discriminate even large directional separations when they strad-
dled the peak of the direction tuning curve. The dark blue row

 
 

Figure 9. Effect of removing temporal correlations on the time course of information about direction. A, Plots of information as
a function of time for a representative neuron. The gray and black curves show the mean and SDs of information about direction
for the actual cumulative spike count and from shuffled data. Vertical dashed lines mark the time window used to obtain the data
plotted in B. B, C, Summary of the effect of shuffling the spike counts across the population. In B, each symbol shows data from one
neuron and plots the increase in information between 56 and 256 msec after response onset for the shuffled data versus that for
the actual spike counts. In C, each neuron is represented by two symbols plotting information measured 256 msec after response
onset as a function of that measured 100 msec after response onset. Open and filled circles show results of analyses based on the
actual and shuffled data. In B and C, the dashed lines have a slope of unity.

 

Figure 10. Discriminability of pairs of motion directions based on the first 100 msec of responses of MT neurons. A, Analysis for
an individual neuron. Each point plots the information about direction computed from responses to a pair of stimuli of a mean
direction specified by the y-axis and a directional separation specified by the symbol. Points have been connected into curves if
they had the same directional separation. Numbers to the left of each curve indicate the directional separation in degrees. The
left-hand y-axis plots information in bits, and the right-hand y-axis plots the equivalent percentage of correct choices based on the
responses of the neuron. The horizontal dashed line marks a threshold for discriminability defined as 69% correct or 0.107 bits of
information. B, Summary of the ability to discriminate pairs of motion directions for the population of MT neurons. Each pixel
summarizes the population data for pairs of stimulus directions of directional separation and mean direction given by the location
of the pixel on the y-axis and x-axis, respectively. Colors indicate the percentage of the MT sample (n 
 36) for which direction
discrimination was above the 69% correct threshold after 100 msec of neural response. In both A and B, a mean direction of zero
means that the two stimulus directions were equally spaced on opposite sides of the preferred direction.
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along the bottom of the image shows that some, but only very
few, neurons were able to discriminate directional separations of
7.5° when the mean direction was on the flank of the direction
tuning curve.

Thirty-one percent of our sample (11 of 36) could discrimi-
nate �30° from �45° stimulus motion (mean direction, �37.5°;
difference, 15°), whereas only 3% (1 of 36) could discriminate
motions that also differed by 15° but were 7.5° on either side of
the preferred direction (mean direction, 0°; difference, 15°). The
average threshold within 60° of the preferred direction ranged
from 16° to 75° across the sample (mean of 37°) after 100 msec of
response; the sample mean fell only slightly to 35° after the full
256 msec of response. We doubt that the poor discrimination of
direction by individual MT neurons is an artifact of our analysis,
because we used a computation that overestimates the percentage
correct and a low threshold of 69% correct for categorizing a pair
of stimuli as discriminable.

Discussion
One of the most important intuitions about the connection of
neural responses to perception and behavior is that averaging
suppresses noise. To make reliable decisions and to provide ac-
curate commands for motor behavior in the face of noise, the
nervous system accumulates evidence over time (Britten et al.,
1992, 1996; Gold and Shadlen, 2003) and across large popula-
tions of neurons (Georgopoulos et al., 1986; Lee et al., 1988;
Treue et al., 2000). The observations of Zohary et al. (1994) on
correlations among the responses of neurons in MT established
that simple ideas about the improvement of precision with aver-
aging are not correct and led a number of groups to reexamine the
problem of noise reduction by accumulating evidence across
populations of neurons (Abbott and Dayan, 1999; Panzeri et al.,
1999; Bair et al., 2001). Our results can be viewed as an extension
of this discussion to the problem of averaging across time.

Challenges of averaging over time
In some systems, averaging over time cannot produce more pre-
cise representations of ongoing sensory stimuli simply because
the relevant neurons respond transiently. Even cells in visual cor-
tex that generate maintained responses often have a substantial
transient component to their response at stimulus onset, and a
number of experiments indicate that these transients make a dis-
proportionate contribution to the sensory discrimination power
of the neuron (Oram and Perrett, 1992; Tovee et al., 1993; Heller
et al., 1995; Muller et al., 2001). The transient/sustained
responses of MT neurons (Lisberger and Movshon, 1999) to
moving visual stimuli provide an excellent opportunity to ana-
lyze averaging over time in detail.

In MT neurons, spike counts provide information about mo-
tion direction that saturates quickly after the onset of the re-
sponse, as if this information were dominated by the initial tran-
sient. Our analysis of the data, however, indicates that the
saturation of information in MT cannot be ascribed solely to the
transient behavior of the neural responses. Information about
motion direction saturates with time even if we start counting
spikes after the transient response is over. We conclude that in-
formation saturates quickly because integration over times in
excess of 100 msec fails to produce the expected suppression of
noise in the response, not because the first few spikes after stim-
ulus onset are inherently much more informative.

The failure to suppress noise by averaging over time can be
traced to correlations within the spike train of single neurons,
much as correlations among the spike counts of different neurons

can limit the suppression of noise by averaging over a population
(Zohary et al., 1994). Even when we corrected for time variation
in firing rates, the spike trains of MT neurons in our population
exhibited correlations that lasted for 100 msec or more. The fail-
ure to reduce the variance by averaging over time is exactly what
is measured by the Fano factor, the ratio of variance to mean spike
count. In our data, Fano factors were small when measured in
small time windows but increased several-fold when we accumu-
lated spike counts in a larger time window. If the Fano factor were
to grow exactly in proportion to the integration time, it would
mean that the correlations in the spike train were so strong that
averaging a sustained response over time would yield zero im-
provement of signal-to-noise ratio. MT neurons are not quite in
this limit. Hence, there is some increase of information as a func-
tion of integration time but much less than expected in the ab-
sence of correlations.

The long-lasting correlations that we observe in the spike
trains of MT neurons have analogs in other systems; in particular,
Teich et al. (1996) have drawn attention to the growth of Fano
factors with integration time in many different classes of sensory
neurons. For many tasks that depend on visual signals emanating
from MT, discrimination performance improves with stimulus
duration T, but the improvement is much slower for long dura-
tions than the 1/�T dependence expected if the system were in-
tegrating the responses of neurons without long-term correla-
tions in their spike trains (Britten et al., 1992; Gold and Shadlen,
2003; Uka and DeAngelis, 2003). From a theoretical point of
view, it is possible that these behavioral observations are con-
nected to our neural data: if neural Fano factors grow as Tb, where
the exponent b describes the degree of temporal correlation, and
discrimination is based on integration of spike counts, then dis-
crimination thresholds will improve as 1/T (1 � b)/2. Growth of
Fano factors with integration time, as we observed, should con-
tribute to a reduced ability for perceptual discriminations to im-
prove with stimulus duration.

Behavioral correlates of rapid saturation of information
The converse of the slow improvement of discrimination thresh-
old with time discussed above is that fine perceptual discrimina-
tions and accurate motor behavior often are possible even with
very brief stimuli. Thorpe et al. (1996) have drawn attention to
the fact that surprisingly sophisticated perceptual decisions can
be made very rapidly, and de Bruyn and Orban (1988) have
shown that human direction discrimination saturates with stim-
ulus presentations lasting �100 msec. Of particular relevance is
the motivation for the experiments discussed here: MT neurons
provide the input for smooth pursuit eye movements (Newsome
et al., 1985; Groh et al., 1997; Born et al., 2000), which are initi-
ated with appropriate speeds and directions based on 100 msec of
target motion (Lisberger and Westbrook, 1985). Preliminary ex-
periments indicate that even the earliest components of pursuit
motor output are highly direction specific (Osborne et al., 2003).
Thus, the rapid accumulation of information that we observe for
single neurons in MT is matched to the time scale on which
information about target direction is used to initiate pursuit. On
the basis of the fact that counting spikes for just 20 msec provides
more than half of the information that one can gain by counting
spikes for 256 msec, we would predict that many behaviors would
be precise even with very short presentations of motion.

Although information about direction is available very
quickly, there is a discrepancy between the amount of informa-
tion provided by single neurons and the precision of behavioral
responses. Smooth pursuit eye movements have an accuracy that
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corresponds to discrimination thresholds of a few degrees on a
time scale of 100 msec (Osborne et al., 2003), equivalent to �4
bits of information about direction. In contrast, most MT neu-
rons in our sample could not make reliable discriminations with
better than 15° accuracy, and none of the cells provided �1.5 bits
of information about direction on the basis of spike counts. Al-
though it is possible that additional information is present in the
precise timing of the first few spikes in the response of an MT
neuron, this possibility did not yield to standard approaches for
our data set. Therefore, it is almost certainly essential to combine
signals across the population of MT neurons to reach the behav-
ioral performance of pursuit. Indeed, given the small increment
in information achievable by averaging across time, averaging
across the population of MT neurons seems like a better strategy.
We do not think that this conclusion is undermined by our choice
to record from MT neurons in anesthetized monkeys, which was
dictated by the need to record from neurons for a long time to
obtain enough repetitions of each stimulus. Indeed, the agree-
ment between our numbers for the correlations across time in
anesthetized monkeys and those of Uka and DeAngelis (2003) in
awake monkeys underscores the validity of our data for compar-
ison with pursuit behavior.

In apparent contrast to our results, previous work on the re-
liability of MT responses has emphasized the similarity of behav-
ioral and neural thresholds for discrimination of the direction of
motion for stimuli consisting of low-correlated motion signals
embedded in large amounts of directional noise (Britten et al.,
1992). However, when viewed on the 100 –200 msec time scale
considered here, the discrimination power of MT neurons for the
stimuli with directional noise is quite poor and typically worse
than the reported behavioral performance on these time scales
(cf. Britten et al., 1992, their Fig. 11) (see also Uka and DeAngelis,
2003).

It is important to remember that the information measures we
find here, like all quantitative characteristics of neural responses,
depend on the ensemble of stimuli used in the experiment. Our
choice of stimuli was motivated by the connection to behavioral
experiments on smooth pursuit, so that we would be comparing
responses to identical stimuli when we compare the information
content of neural and behavioral responses. Thus, we chose target
motions that match those used to analyze pursuit behavior in the
laboratory and that fall within the natural stimulus set for pur-
suit, if not for all visual tasks. We chose not to vary other visual
parameters such as luminance or contrast, although we doubt
that would change the basic observation that information about
direction saturates early in the response. Under very different
stimulus conditions, in which motion trajectories vary dynami-
cally in time, neurons can provide information about the stimu-
lus at constant rates (rather than saturating), but this is possible
only because different temporal windows in the response provide
information about velocity at different moments in time (Bialek
et al., 1991; Buracas et al., 1998); simple integration of the spikes
over time is of limited effectiveness in this case because of the
dynamics of the stimulus itself.

Under our stimulus conditions, the time scale for saturation
of information corresponds to counting rather few spikes. In
almost all neurons, information saturated before an average of
three spikes had been fired, and, in one-third of the population,
the half-saturation point had been passed once one spike (on
average) had been fired. Because this time scale also corresponds
to the initiation of pursuit, the contribution of each cell to the
population code that drives pursuit must be conveyed by the
arrival times of just these few spikes.
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